
Distributed DBMS architecture

• Covered topics
– Transparencies in DDBMS
– Architecture of DDBMS
– Fragmentation, replication, allocation

• Types and role of fragmentation
• Types and role of replication
• Allocation problem

Transparency
• In general: separation of higher-level semantics

from lover-level implementation issues
• ‘Hide the implementation from users’
• Forms:

– data independence
– network transparency
– replication transparency
– fragmentation transparency

• Transparency can be provided at different levels
of the system

Transparency
• Data independence

– logical data independence: user applications are not
affected by changes in the logical structure of the DB
(schema definition)

– physical data independence: hiding the details of the
storage structure

– the only form that is important in centralized DBMSs as
well

• Network (distribution) transparency
– location transparency: an operation on data is independent

of both the location and the system where it is executed
– naming transparency: unique name is provided for each

object in the DB.

Transparency

• Replication transparency
– Data is replicated for reliability and performance

considerations.
– The user should not be aware of the existence of copies

• Fragmentation transparency
– DB relations are divided into smaller fragments for

performance and availability reasons
– The global queries should be translated to fragment queries
– A question of query processing.

The origin of transparency
• Access layer: transparency features are built into user

language which is translated into the requested operations
(little transparency is provided from DBMS and OS)
– typically: language transparency

• DBMS: acts as an integrated OS and DBMS, makes all the
necessary translation between OS and user interface.
– Essential when security and fault tolerance is critical and the OS

cannot provide such services.
– Typically: data, replication and fragmentation transparency

• OS: transparent access to resources provided by OS (e.g.
device drivers, etc.) can be extended to distributed
environments
– typically: network transparency

Architecture
• The architecture of a system defines its structure
• In the foregoing parts the ‘architecture’ is a reference

model
– it is an idealized view
– real world systems may be different
– yet it shows the essential components and it is a reasonable

framework

• Goal:
– present the issues that need to be addressed at design
– present a framework within which the design and implementation

issues can be discussed

• Analogon: the ISO/OSI 7-layered reference model for
computer networks

DBMS architecture

• A reference model can be described:
– based on components. Components and their

interrelations are defined.
– Based on functions. Functions that the system will

perform are defined.
– Based on data. Different types of data and functional

units (within an architectural framework), that will
realize or use data, are defined

• Usually there is an interplay among them.

ANSI/SPARC architecture

• A centralized model from the 70s but generated
interest and it is the basis of Distributed DBMSs

• Based on data organization
– external view (user) - highest level, users’ view of a

portion of the DB and relationships among data
– conceptual view (enterprise) - abstract definition of the

DB, the ‘real world’ view. Represents data without
considering the application or the storage requirements

– internal view (system) - lowest level, physical definition,
storage issues

ANSI/SPARC architecture

Internal
Schema

External
Schema

Conceptual
Schema

Users

• Data organizational view

UsersUsersUsers Users

External
Schema

External
Schema

Example of schemas

• Conceptual schema: the description of the
modeled world (a pseudo code is shown here)
– RELATION EMPLOYEE [

KEY = {EMPLOYEE_NUMBER}
ATTRIBUTES = {

EMPLOYEE_NUMBER: CHARACTER(9)
EMPLOYEE_NAME: CHARACTER(15)
TITLE: CHARACTER(10) }]

– RELATION TITLE_SALARY [
KEY = {TITLE}
ATTRIBUTES = {

TITLE: CHARACTER(10)
SALARY: NUMERIC(6) }]

Example of schemas
• Internal view: description of physical realization

– INTERNAL_REL EMP [
INDEX ON E# CALL EMNIX
FIELD = {

E#: BYTE(9)
E_NAME: BYTE(15)
TIT: BYTE(10) }]

• External view: a portion of the database in the form that
conforms the user’s needs (SQL-like notation shown here)
– CREATE VIEW PAYROLL (ENO, ENAME, SAL)
AS SELECT EMPLOYEE.EMPLOYEE_NUMBER,

EMPLOYEE.EMPLOYEE_NAME
TITLE_SALARY.SALARY

FROM EMPLOYEE, TITLE_SALARY
WHERE EMPLOYEE.TITLE=TITLE_SALARY.TITLE

Architectural models for Distributed DBMSs
• DBMS implementation alternatives

Distribution

Autonomy

Heterogeneity

Distr. homogeneous DBMS

Distr. federated DBMS

Distr. multidatabase system

Homogeneous
multiple DBMSs
(composite)

Heterogeneous
multidatabase system

Single site heterogeneous
federated DBMS

Distr.
heterogeneous
DBMS

Autonomy
• Distribution of control (and not data) - the degree of

independence
– The local operations of the individual DBMSs are not

affected by their participation in the multidatabase system
– The manner in which individual DBMSs process queries and

optimize them should not be affected by the execution of
global queries

– System consistency should not be compromised when
individual DBMSs join or leave the multidatabase system
[Gilgor and Popescu-Zeletin’s definition]

• Possibilities:
– tight integration: a single-image of the entire DB is available
– semiautonomous (federative) systems: operate

independently but participates in a federation, i.e. part of the
DB is sharable

– total isolation

Distributed DBMSs (tight integration)

• From data organizational point of view
– different physical data organization requires different

local internal schemas
– the DB is fragmented and replicated - each site

represents a part of the modeled world - the conceptual
schemas at each site are different

– but: the users access the DB by different external
schemas defined above the global conceptual schema

• it means there is a low level of autonomy - individual DBs are
in tight integration

Distributed DBMS architecture
• Data organizational view

Local Internal
Schema 1

Local Conceptual
Schema 1

External
Schema 1

Global Conceptual
Schema

LCS 2

LIS 2

ES 2 ES n

LCS n

LIS n
Heterogeneity

Replication,
fragmentation

Transparency in DDBMS architecture

• Data independence: it is an extension of
ANSI/SPARC that supports data independence

• Location and replication transparencies: definition
of local and global conceptual schemas and
mapping between them

• Network transparency: definition of global
conceptual schema

Another view: component based
architecture model for distributed DBMS

User Interface
Handler

Semantic Data
Controller

Global Query
Optimizer

Global Execution
Monitor

Local Query
Processor

Local Recovery
Manager

Runtime Support
Processor

Local
Conceptual
Schema

Local
Internal
Schema

Log

External
Schema

Global
Conceptual
Schema

GD/D

User processor Data processor

User

Components of the DDBMS architecture

• User processor
– User interface: interprets commands and formats results
– Semantic data controller: checks integrity constraints and

authorizations (def. in GCS) to check if the query can be
processed

– Global query optimizer and decomposer: controls
execution strategy, translates global queries into local ones
(GCS and LCS)

– Distributed execution monitor (distributed transaction
manager): coordinates the distributed execution of the
query (via possible communication with other monitors)

Components of the DDBMS architecture

• Data processor
– Local query optimizer (access path selector): controls

the way how data is accessed (access path means data
structures + algorithms to access data, e.g. indexing)

– Local recovery manager: ensures local consistency
– Run-time support processor: physically accesses the

data storage according to the commands, interfaces the
OS

Multi-DBMS architecture

• Difference between distributed multi-DBMSs and
distributed tightly integrated DBMSs: autonomy

• Fundamental difference in architecture: the global
conceptual schema
– in DDBMSs it represents the conceptual view of the

entire database, while in MDBMSs it represents some
of the local databases

• MDBMS
– using global conceptual schema
– without global conceptual schema

Multi-DBMS using global conceptual schema

Local Internal
Schema 1

Local Conceptual
Schema 1

Global Conceptual
Schema

ES 2 ES n

LCS n

LIS n

Local External
Schema LESLES LES

Global External
Schema

Multi-DBMS using global conceptual schema
(semiautonomous, federated)

• GCS is defined by either
– by integrating local external schemas or
– by integrating parts of the local conceptual schemas

• Main difference between the GCSs
– integrated DDBMS: mapping from global to local

conceptual schemas
– MDBMS: mapping from local to global conceptual schemas

• In the presence of heterogeneity
– unilingual and
– multilingual approaches are possible

Multi-DBMS without a global
conceptual schema

Local Internal
Schema 1

Local Conceptual
Schema 1

External
Schema 1

LCS 2

LIS 2

ES 2 ES n

LCS n

LIS n

Multidatabase
layer

Local system
layer

Multi-DBMS without a global
conceptual schema

• Some definitions claim the essence of
multidatabase management is the lack of global
schema

• Federated DB architectures sometimes do not use
a global schema, instead
– export schema for sharing data with others
– import schema for accessing the global database (global

external view)

Multi-DBMS

• Federation: the content (or parts of the content) of
different DBs are put together logically
– they may use different physical implementation (LIS)
– they may use different data representation (LCS)

• The GCS, the Import and Export Schemas serve as a
bridge between the different DBs
– there is no way to generate these schemas automatically
– they are created and tailored to each application individually
– the models presented here are idealized and usually do not

appear in this clean form in practice

Global directory
• The global directory is an extension of the ANSI/SPARC dictionary that

describes the location and the properties of fragments
• It is a meta-database that contains information about the database, e.g.

– location of fragments,
– content of fragments, etc.

Type
(global/local)

Location
 (central/distributed)

Replication

Local, distributed, replicated Local, distributed,
nonreplicated

Global, distributed,
replicated

Global,
central,
nonreplicated

Fragmentation, replication, allocation

• Difference between parallel and distributed DBs
– A distributed DB is fragmented because data is fragmented

by nature
• geographically distributed sites of different architectures, systems,

different concepts are put together logically
• fragmentation is usually given and it is not a fundamental design issue
• the location of DBs are also given, the allocation is addressed if

replication is applied
– A parallel DB can be fragmented to gain performance

• fragmentation is a crucial design issue
• allocation is also up to the designer
• both have a fundamental impact on performance
• a parallel DB is essentially a single DB and administrators have a

greater freedom to tune the system

The role of fragmentation
• Fragmentation: decomposition of relations

– it is not aimed at data distribution! Rather:
– the relation is not a proper unit for distribution, a more appropriate

unit can be obtained by partitioning
– applications view only a subset of relations - locality can be

optimized
– unnecessary replication and high volume of remote memory

accesses can be avoided
– transactions can be executed concurrently: intraquery transaction

• but:
– conflicting requirements may prevent decomposition into mutually

exclusive fragments that can lead to performance degradation
– semantic data control: checking for dependencies may be difficult

Fragmentation alternatives

JNO JNAME BUDGET LOC
J1 Instrumentation 150000 Montreal
J2 Database 135000 New York
J3 CAD/CAM 250000 New York
J4 Maintenance 310000 Paris

JNO JNAME
J1 Instrumentation
J2 Database
J3 CAD/CAM
J4 Maintenance

JNO BUDGET LOC
J1 150000 Montreal
J2 135000 New York
J3 250000 New York
J4 310000 Paris

JNO JNAME BUDGET LOC
J1 Instrumentation 150000 Montreal
J2 Database 135000 New York

JNO JNAME BUDGET LOC
J3 CAD/CAM 250000 New York
J4 Maintenance 310000 Paris

Horizontal
(distr. + parallel)

Vertical partitioning
(parallel)

Degree of fragmentation

• The extent to which the database is fragmented
– not fragmented at all
– fragmented to individual tuples (h) or attributes (v)

• How to decide?
– The application should be characterized according to a

number of parameters
– Based on the result, the fragmentation can be designed
– It is essential in parallel DB and less important in

distributed DB
– See chapter ‘Database Design’

Correctness rules of fragmentation

• (Vertical) fragmentation is similar to normalization
process

• Rules to avoid semantic changes at fragmentation:
– Completeness (lossless decomposition): no attributes or

tuples may be eliminated at fragmentation
– Reconstruction: there must be a relational operator (∇) that

can reconstruct the original relation, i.e. R= ∇ Ri, ∀ Ri∈FR

 ∇ may be different for different alternatives of
fragmentation (horizontal or vertical)

– Disjointness: horizontal fragments must be disjoint, i.e. if
data item d is in Rj, then it is not in any other Ri (i≠j)

Replication

• Fragments of relations are placed across the sites
multiple times
– increases reliability - if some sites fail, the data is still available
– increases locality - the data can be retrieved from the closest or local site
– increases performance - a certain fragment may be accessed by less users

• but the question
– of mutual consistency
– concurrency control
– transparency must be addressed

• A DB can be
– partitioned (no replication)
– replicated

• fully replicated - the whole DB is copied to each site
• partially replicated

The problem of allocation
• After the DB has been partitioned, fragments must be

allocated to various sites in the network or processing
elements of a parallel machine - possibly multiple times
when replicated

• Given a set of fragments F={F1, F2, … , Fn} and sites
S={S1, S2, … , Sm} on which a set of applications Q={Q1,
Q2, … , Qq} os running
– Minimal cost. Minimize the cost of storing each Fi at site Sj,

querying Fi at site Sj, updating Fi at all sites where it is stored and
the cost of communication

– Performance. Maintain a performance according to a metric
• response time
• throughput

– Even a very simple formulation of the optimization is proven to be
NP-complete - heuristics for suboptimal solutions. For a general
model see ‘Database Design’

