
TEMPUS S-JEP 12495-97 Distributed Database Systems
1

Design of Distributed Databases

General goals of the DDBMS design:
- to provide high performance
- to provide reliability
- to provide functionality
- to fit into the existing environment
- to provide cost-saving solutions

Importance of design
Reasons of poor efficiency:

- Hardware: 10%
- DBMS: 15%
- Database design: 25%

 - Applications design: 55%

Costs of improvement :
- Hardware: 10%
- DBMS: 20%
- Database design: 40%

 - Applications design: 30%

The design phase usually requires the most time within the
development process.

- 3-5 code lines per work hour

Logical Database Structure Models

TEMPUS S-JEP 12495-97 Distributed Database Systems
2

Non-distributed databases

External view

DB physical layer

DBMS logical view

Distributed databases

 Physical layer

Global schema

Fragmentation schema

Distribution schema

DB

Local mapping
schema 1

DBMS local view

DB

Local mapping
schema 2

DBMS local view

External view

TEMPUS S-JEP 12495-97 Distributed Database Systems
3

Steps of Distributed Database Design

There are in general several design alternatives.

Top-down approach: first the general concepts, the global
framework are defined, after then the details.
Down-top approach: first the detail modules are defined, after then
the global framework.

If the system is built up from a scratch, the top-down method is
more accepted.
If the system should match to existing systems or some modules
are yet ready, the down-top method is usually used.

General design steps according to the structure:
- analysis of the external, application requirements
- design of the global schema
- design of the fragmentation
- design of the distribution schema
- design of the local schemes
- design of the local physical layers

DDBMS -specific design steps:
- design of the fragmentation
- design of the distribution schema

During the requirement analysis phase, also the fragmentation and
distribution requirements are considered.

TEMPUS S-JEP 12495-97 Distributed Database Systems
4

Top-down Database Design

Goals

Conceptual schema design View design

Global conceptual

schema
Access information

Definition of

external schemata

Distribution design

Local conceptual schemata

Physical design

Physical schema

Collection of operational statistics

Users

TEMPUS S-JEP 12495-97 Distributed Database Systems
5

Down-Top Design

Usually existing and heterogeneous databases are integrated into a
common distributed system.

Steps of integration:

- Common data model selection
As the different component databases may have different data
models and the DDBMS should based on a single, common data
model, the first step is to convert the different models into a
common model.
The common model is usually an intermediate model, different
from the data model of the components

- Translation of each local schema into the common model
The different schema element descriptions should be converted
into this common model.

- Integration of the local schema into a common global schema
Beside the collection of the component descriptions, the
integration should deal with the matching of the different semantic
elements and with the resolving of the different types of
inconsistency.

 - Design the translation between the global and local schemes
To access all of the components on a homogeneous way, a
conversion procedure should be applied.

TEMPUS S-JEP 12495-97 Distributed Database Systems
6

Goals of the Fragmentation and Distribution Design

Local processing
It is desirable to perform as much tasks as possible at the local
level, i.e. without any access to the other sites. The local
processing provides an easier management and a more efficient
execution.
Although a complete locality is an aim from the performance point
of view, it can not be realized due to the distribution requirements
of the system.

Availability and reliability of the DDB
It is desirable to distribute the data over different sites to provide
higher availability. Thus, in the case of site failures a site can
replace the other, no service or functionality will be lost.
The replication, distribution is a useful method to perform a
recovery if the data on some site would be destroyed.

Distribution of processing load
It is desirable to distribute the processing power over the different
sites to provide a higher throughput. The different processing steps
of a complex task will be distributed among several sites enabling
a parallel processing too.

Storage cost reduction
It may be cost effective if not every site is equipped with the same
high performance and costly elements. It is enough to install only
some of such specialized sites, the others can use it in a shared
way. We should find the trade-off of these requirements

TEMPUS S-JEP 12495-97 Distributed Database Systems
7

Design of the Fragmentation

The purpose of this phase is to determine the non-overlapping
pieces, fragments of the global database which can be stored as a
unit on different sites.

The data elements having the same properties, behavior are
assigned to the same fragment.

Main aspects of the fragmentation:

Granularity:
The granularity determines at which level of database storage can
be the fragmentation performed. If it is too low (field) then it needs
a lot of management cost. If it is too rough (user level) then the
unnecessary elements should be replicated causing a higher cost.

Fragmentation strategy
- horizontal fragmentation:. In this case the granularity is at the
tuple level, and the attribute values of the tuple determine the
corresponding fragment. The relation is partitioned horizontally
into fragments.
- vertical fragmentation: the assignment of the data elements in a
table is based on the schema position of the data. In this case the
different projections are the content of the fragments.
- mixed fragmentation: the data are fragmented by both the vertical
as the horizontal method.

TEMPUS S-JEP 12495-97 Distributed Database Systems
8

Horizontal Fragmentation

The relation is partitioned horizontally into fragments..

Primary fragmentation:
the assignment of the tuple depends on the attribute values of the
tuple
Derived fragmentation:
the assignment of the tuple depends not on the attributes of this
tuple, but on the attributes of another tuple(s).

The fragmentation is described by an expression which value for
every tuple determines the corresponding fragment.

Basic terms of fragmentation expression:

 - Simple predicate:
 attribute = value

- Minimal term predicate:
if P is a set of simple predicates
y = ∧ p∈ P p*
where p* = P or ¬ p and y ≠ false

- Fragment :
the set of tuples for which a minimal term predicate is true

A predicate is relevant if it contributes to the distinction of
fragments with different access patterns

TEMPUS S-JEP 12495-97 Distributed Database Systems
9

Horizontal Fragmentation

How to build the P set of predicates?

First we should analyze the access schemes of the tuples. Then we
determine the groups of tuples having different references by at
least one application. Analyzing the attribute values within the
groups we have to fine a set of simple predicates for every
fragment groups.

A P set of predicates can be used to describe the fragmentation if P
is complete and minimal.

P is complete if and only if any two tuples belonging to the same
fragment are referenced with the same probability by any
application.
P is minimal if all its predicates are relevant.

Fragmentation steps:
1. initialization , P = ∅
2. take a p predicate so that there exist at least one application
that references the tuples meeting p differently as the tuples not
meeting p.
3. extend P with a new p predicate similar to the step 2.
4. eliminate non-relevant predicates
5. if P is not complete go to step 3
6. if P is complete, P is the result

Sometimes the cross-product of the application level criteria are
used as global criteria.

TEMPUS S-JEP 12495-97 Distributed Database Systems
10

Horizontal Fragmentation

Example 1

The sample table to be fragmented:
Employee(Name, Department, Skill, Salary)

The applications requiring access to the Employee table:
Application 1: it will access the employees in the department
with Department id = 1.
Application 2: it will access the programmers independently
from their departments

The relevant simple predicates
 - for application 1:

 Department = 1
- for application 2:

Skill = ‘Programmer’

Predication set:
P = { Department = 1, Skill = ‘Programmer’}

The minterm predicates:
Department = 1 AND Skill = ‘Programmer’
Department = 1 AND Skill <> ‘Programmer’
Department <> 1 AND Skill = ‘Programmer’
Department <> 1 AND Skill <> ‘Programmer’

A not relevant predicate:
Salary > 250000

TEMPUS S-JEP 12495-97 Distributed Database Systems
11

Horizontal Fragmentation

Example 2

The sample table to be fragmented:
Employee(Name, Area, Skill, Salary)
Department(DeptId, Name, Area)

There are two areas (A1,A2) and three application centers
(C1,C2,C3).
The applications requiring access to the tables:

Application 1: it will access the employees The likelihood of
accesses: from C1 : A1:80%, A2:20%; from C2 : A1:50%,
A2:50%; from C3 : A1:20%, A2: 80%
Application 2: it will access departments with the following
probabilities: from C1: A1:100%, from C3:A2:100%
Application 3: it will access departments with the following
probabilities: from C1: DeptId<100:100%, from C2: Deptid
between 100 and 200: 100%, from C3: DeptId>200:100%

area A1 area A2

C1
C2

C3

TEMPUS S-JEP 12495-97 Distributed Database Systems
12

Horizontal Fragmentation

Example 2

The simple predicates for Employee
 Area = A1
 Area = A2

The simple predicates for Department:
 Area = A1
 Area = A2
DeptId < 100
DeptId between 100 and 200
DeptId > 200

We can reduce the minterm predicate set based on the
dependencies:

Area <> A2 ⇔ Area = A1
DeptId < 100 ⇒ Area = A1
DeptId > 200 ⇒ Area = A2

The minterm predicates for Employee:
Area = A1
Area = A2

The minterm predicates for Department:
DeptId < 100
DeptId between 100 and 200 AND Area = A1
DeptId between 100 and 200 AND Area = A2
DeptId > 200

TEMPUS S-JEP 12495-97 Distributed Database Systems
13

Derived Horizontal Fragmentation

The assignment of the tuple depends not on the attributes of this
tuple, but on the attributes of another tuple(s).

The derived fragmentation is used mainly in the case of join.

Join of fragmented tables:
Generally, to determine all pairs of matching tuple-pairs we should
check every possible tuple-pairs for matching. Thus every tuples of
every fragments of one table is compared with every tuples of
every fragments of the other table.
The join graph in generally:

It requires a high network traffic and a lot of comparisons

The cost can be reduced if not every fragments are to be compared
with each others.

Partitioned join:

F1

F2

Fn

G1

G2

Gn

F1

F2

Fn

G1

G2

Gn

TEMPUS S-JEP 12495-97 Distributed Database Systems
14

Derived Horizontal Fragmentation

The most optimal case is when every fragment is compared with
only one other fragment.

Simple join graph:

The join cost can be minimized if the corresponding fragments are
located on the same site.
In this case the fragmentation of the two participating tables are not
independent from each others. The fragmentation of one table can
be derived from the fragmentation of the other table.

The result of the join operation is the union of the results of the
fragment joins.

Do not forget:
Different joins require different fragmentation, thus we should
analyze which type of join will dominate the applications, how can
we combine the different fragmentation requirements.
If join A based on condition C1, the join B is based on condition
C2, then the fragmentation based on C1 ∧ C2 meets both
requirements.

F1

F2

Fn

G1

G2

Gn

TEMPUS S-JEP 12495-97 Distributed Database Systems
15

Derived Horizontal Fragmentation

Example

two tables:
Car (number, type, age, owner)
Citizen (id, name, city)

The application requires very often to query the cars with the data
of the owner together.
The owner data can be assigned to the car only through the join
operation of the two tables.

The join condition is car.owner = citizen.id.

The citizen table is horizontally fragmented by the city attribute.

In order to perform the join in a simple way, the fragmentation of
the car table is derived from the fragmentation of the citizen table.

The derivation is performed by the execution of a semijoin
operation:

carI = car ×owner = id citizenI

where I denotes the fragment index. The car table has as many
fragments as the citizen table has.

Thus the join can be partitioned into non-overlapping parts:
car ×owner = id citizen = ∪ I carI ×owner = id citizenI

TEMPUS S-JEP 12495-97 Distributed Database Systems
16

Vertical Fragmentation

The assignment of the data elements in a table is based on the
attribute identifier of the data. In this case the different projections
are the content of the fragments.

Fragmentation rule:
Every attribute must belong to at least one fragment, and every
fragment must have a tuple identifier.

Vertical partitioning:
every attribute is contained in only one fragment.

Vertical clustering:
an attribute may be contained in more than one fragments.

The vertical clustering causes replication of some data elements.
The replication is more advantageous for the read-only
applications than for the read-write application. In the later case,
the same update operation is performed on several sites.

Identification of the fragmentation
The fragmentation of an R relation schema into R1 and R2 is only
then advisable when there are different applications that use either
R1 or R2 but not both.

The fragmentation is based on the analysis of the application
requirements. Every attribute is checked against every applications.
This is a heuristic method.

TEMPUS S-JEP 12495-97 Distributed Database Systems
17

Vertical fragmentation

There are two main heuristics methods to perform the vertical
fragmentation:

- split approach : a global relation schema is recursive split into
disjoint segments
- grouping approach : the single attributes are progressively
grouped into larger segments

The main steps in the design of the vertical fragmentation

- analyze the applications
(A1,A2,A3,A4)

- analyze the queries
(Q1,Q2,Q3,Q4)

- determine the reference-matrix
(1: Qi references Aj, 0: not)

A A A A
q

q

q

q

1 2 3 4

1

2

3

4

1 1 0 1
1 0 1 0
0 1 1 0
0 1 0 1

Vertical fragmentation

TEMPUS S-JEP 12495-97 Distributed Database Systems
18

•
We define the attribute affinity matrix

aff A A acc q ref qi j l k l k
Sitek use q A use q A lk i k j

(,) ()* ()
| (,) (,)

=
∀= ∧ =
∑∑

1 1

• We apply the algorithm BEA to the attribute affinity matrix , in order to compute
the table of attribute array affinity matrix

A A A A
A

A

A

A

1 2 3 4

1

2

3

4

45 0 45 0
0 80 5 75
45 53 3
0 75 3 78

5

A A
A

A

A

A

1 2

1

2

3

4

45 0
0 80
45
0 75

5

A A A
A

A

A

A

1 3 2

1

2

3

4

45 45 0
0 80
45 53
0

5

5

3 75

®

A A A
A

A

A

A

1 3 2

1

2

3

4

45 45 0
0 80
45 53
0

5

5

3 75

®

A A A A
A

A

A

A

1 3 2 4

1

2

3

4

45 45 0
0 80
45 53
0

0

5 75

5 3

3 75 78

®

A A A A
A

A

A

A

1 3 2 4

1

3

2

4

45 45 0

5
0

0

45 53 5 3

0 80 75

3 75 78

®

)],(),([*),(max:goal 11
1 1

+−
= =

+∑ ∑ jiji

n

i

n

j
ji AAaffAAaffAAaff

Vertical fragmentation

TEMPUS S-JEP 12495-97 Distributed Database Systems
19

A A A A
A

A

A

A

1 3 2 4

1

3

2

4

45 45 0

5
0

0

45 53 5 3

0 80 75

3 75 78

TA

BA

AQ(qi) = {Aj | use(qi, Aj) = 1}
TQ = {qi | AQ(qi) ⊆ TA}
BQ = {qi | AQ(qi) ⊆ BA}
OQ = Q - TQ - BQ

CTQ acc q ref qj i j i
Siteq TQ ji

=
∀∈
∑∑ () * ()

CBQ acc q ref qj i j i
Siteq BQ ji

=
∀∈
∑∑ () * ()

COQ acc q ref qj i j i
Siteq OQ ji

=
∀∈
∑∑ () * ()

z = CTQ * CBQ - COQ2

TEMPUS S-JEP 12495-97 Distributed Database Systems
20

Mixed Fragmentation

The relation is fragmented both vertically and horizontally.

The mixed fragmentation means that a fragment is recursively
fragmented.
Two types of sub-fragmentation:

- horizontally fragment is vertically fragmented
- vertically fragment is horizontally fragmented

Fragmentation tree:
The hierarchy of the fragments. The root element is the base table.
There are two types of connection: vertically or horizontally
fragmentation. For every node, the incoming and the outgoing
edges are of different type. Every edge is assigned with the
selection criteria. Every outgoing edges of a node belong to the
same fragmentation.

In the praxis, the fragmentation tree is usually not higher than two
levels.

Example
Base table:

Employee (Id, Name, Age, Salary, Dept)
Fragmentation criteria:

- vertically : V1 : (Id, Name, Age, Dept), V2: (Id, Salary,
Dept)
- horizontally : H1: Salary < 100, H2: 100 <Salary <200, H3:
200 < Salary

TEMPUS S-JEP 12495-97 Distributed Database Systems
21

Fragment placement

The fragments are logical and storage units, containing the data of
similar access mode.
The fragments are assigned to sites.

A site can contain different fragments, and there are several
candidate sites for the storage of a fragment.

Goals of fragment placement:
Minimal cost:
- storage cost
to find the sites with low storage costs, no unnecessary replications
- data retrieval cost:
to try to place the fragment on the site of the application
- data update cost:
to minimize the replication of the read-write data elements
- communication cost:
to find the sites near the application and to try to maximize the
local processing

Maximal performance:
- minimize response time
every application should find a replica of the data on the local or a
close site
- maximize throughput
to allow several concurrent applications

TEMPUS S-JEP 12495-97 Distributed Database Systems
22

Fragment placement strategies

The fragment placement problem has a lot of similarity with the
file allocation problem, but it also differs from it in some aspects:
- the fragments belong strongly together
- the fragments are not independent from each others
- the operations are complex and may access several fragments.

Main fragment allocation strategies:
- nonredundant:
every fragment is stored at only one site, no replication
- redundant:
a fragment may be replicated on different sites

The redundant storage may rise the efficiency but it is more
complicated to design it:
- how many and which type of replications should be implemented
to gain an appropriate efficiency
- the number of alternatives increases dramatically, as a fragment
may be allocated to different sites at the same time.

Placement algorithms:
- best - fit :
nonredundant method, the site with best measure is selected
- all beneficial sites :
redundant, all the sites with measures upper a limit are selected
- additional replication:
redundant, starting from a nonredundant allocation adds beneficial
replications to the system

TEMPUS S-JEP 12495-97 Distributed Database Systems
23

Horizontal fragmentation

Best-fit approach:
The sites will be evaluated how many accesses are required from
the applications located on this site:

B1
ij = Σk fkjnki

where
- fkj the frequency of application k at site j
- nki the number of accesses from application k to fragment i

The site with greatest Bij value is selected for the fragment i.

All beneficial site approach:
The goodness of a site is measured by the benefit of the local read
accesses and the costs of remote update accesses:

B2
ij = Σk fkjrki - C × Σk Σl<>j fkluki

where
- fkj the frequency of application k at site j
- rki the number of read accesses from application k to
fragment i
- uki the number of update accesses from application k to
fragment I
- C update cost relative to the read

Additional replication approach:
Beside the costs involved in B2

ij a so called reliability factor is
contained in the measure too. This factor increases with the
increasing number of replications.

TEMPUS S-JEP 12495-97 Distributed Database Systems
24

Vertical Fragmentation

Split approach

The benefits of a split operation is calculated by the following
formula:

B = Σk∈As fksnki + Σk∈At fktnki - Σk∈A1 fkrnki - Σk∈A2 2fkrnki -
Σk∈A3 Σj∉ r,s,t fkjnki

where
- r : the site-index of the base relation to be fragmented
- s and t are the site-indexes where the two new fragments of
base relation are allocated.

- As and At the applications running at site s or t
- A1: applications on site r accessing only one of the r or s
fragments.
- A2: applications on site r accessing both of the r or s
fragments.
- A3: applications on site differ from r,s,t accessing both of the
r or s fragments.

Grouping approach

The benefit function is extended by components referring to the
replications.
We must differ the read and the update accesses

