

Module Library for Rapid Prototyping and Hardware Implementation of Vector
Control Systems

József Vásárhelyi Mária Imecs
Department of Automation Department of Electric Drives and Robots

University of Miskolc Technical University of Cluj
H-3515 Miskolc Egyetemváros 3400 Cluj-Napoca, PO.1, Box 99

Hungary Romania
vajo@mazsola.iit.uni-miskolc.hu Maria.Imecs@edr.utcluj.ro

János J. Incze Csaba Szabó
Department of Electric Drives and Robots Department of Electric Drives and Robots

Technical University of Cluj Technical University of Cluj
3400 Cluj-Napoca, PO.1, Box 99 3400 Cluj-Napoca, PO.1, Box 99

Romania Romania
Incze@edr.utcluj.ro Csaba.Szabo@edr.utcluj.ro

Abstract – The paper focuses on the implementation of a
module library for vector control systems of AC drive. The
rapid prototyping and fast implementation of vector control
systems becomes possible with the created module library.
The control system structures are implemented in
configurable logic cells using Field Programmable Gate
Array (FPGA). The performances of the created control
structures were compared with other simulation results.

I. INTRODUCTION

Most motor control applications concern with vector
control for AC drives. Vector control systems for induction
motors give the best dynamic behaviour. Analysing these
systems some modularity can be observed, which help fast
implementation of motor control applications in
reconfigurable structures [3], [10].

Reconfigurable hardware was used in vector control in
the last years for control system implementations. We
speak about dynamic reconfiguration of vector control
systems for AC drives when the real-time application
(software) changes the computing platform structure
(hardware). In vector control systems, the reconfigurability
was introduced by Imecs et all. in [1]. In this concept, each
configuration is considered as a state of a logic state
machine. When reconfiguration condition occurs, the
system will start reconfiguration process in which it
switches the current configuration to the next
corresponding one. This type of configuration is the
context switching and was developed by Sanders in [6].
While context switching is a reconfiguration technology
for Field Programmable Gate Arrays (FPGA), the logic
state machine with different control system structure in
each state is a reconfiguration method for vector control
systems presented in the following figure:

Power-on

Init

STATE1
Configuration

1

STATEn
Configuration

„n”

STATE2
Configuration

2

Fig. 1. State machine with different vector control structures in each state.

In order to make the reconfiguration possible, there is a
need a close analysis of the known control structures.
Kelemen and Imecs in [5] presented most of the known
control structures for AC drive. A part of the analysis is
presented in the next section.

II. VECTOR CONTROL SCHEME ANALYSIS

The dynamic behaviour of the AC machines is improved

by vector control procedures based on the field-orientation
principle. The necessity of reconfiguration is based on the
observation that the performance of the drive is depending
on the vector control structure correlated with the type of
the supply power frequency converter [9], [10].

The analysis of the control schemes was performed
based on the following criteria:
• Given two vector control structures when common

modules exist:
o Which are the common modules in the same

position with the same function?
o Which are the common modules with different

functionality?
o Which are the particular modules of each

reconfigurable structure?
• When reconfiguration condition occurs, is it possible

the parameter transfer for the modules on the same
position or no parameter transfer allowed?

• Is the parameter transfer of the PI controllers of the
different schemes possible?

• Is it possible to give a general mathematical form of
all the modules?

• Resulting from the analyses, the module library should
be universal for rapid prototyping of any vector
control system and from the prototype the
implementation should directly result

Let us analyse such a reconfigurable vector control
structure for AC drives with two configurable states. This
vector control structure presents the generalities of the
most common control schemes and in the meantime
contains some particular modules. The reconfigurable state
machine presented in Fig. 1 for the vector control structure
presented in Fig. 2 is working in state 1 as a tandem
converter [7], [8], [9]. The tandem converter is working
with two inverters. The two inverters are: Current Source
Inverter (CSI), which is controlled in current, and the other
the Voltage Source Inverter (VSI) is controlled in voltage.

VsC

Ref
rsdi λ

Ref
rsq

Ref
rsd

i

i

λ

λ

Ref
rsq

Ref
rsq

i

i

λ

λ

Ref
sq

Ref
sd

x

x
Ref
sdv
Ref
sqv

Ref
s

Ref
sV

γ

Ref
sq

Ref
sd

i

i

[is] isd

isq

CooT

[D(λr)]

cosλr sinλr

Induction
motor

Phase
Transformation

ωr

Mechanical Angular Speed

Identified Field Ψr

PhT
[A]

[us]

vsd

vsq

VA2

Stator-flux
Computation

2

1

PhT
[A]

ψsC ψmCo
ψsd

ψsq ψrCo

AC line

Ref
si

DC-link current
controller

CSI Current

PAM-CSI
fs

εCSI
VA1 Synchronisation

α

iDC

Ld

-
+

Ref
DCi

32

π

Ref
sq

Ref
sd

v

v
CooT

[D(-λr)]
VA3

SVM

1

2

3xC

2

1

Stator-flux
Compensation

Air-gap-flux
Compensation

Rotor-flux
Computation

isdλr
isqλr

-
+

-
+

Zp

Current
Controllers

Ref
rω

-
+

ω

ψrd

ψrq

PWM
logic

Ref
rΨ

Flux
Controller

-
+

Speed-2
Controller

ψmd

ψmq

Diode
Rectifier

PWM-

VSI

Cd

Speed-1
Controller

isd
isq

usdλr

usqλr

Ref
sε

Phase
Controlled
Rectifier

1

2

UsC
[us]

Fig. 2. Reconfigurable vector control structure with two configuration states.

In this way the VSI controlled by Pulse-Width Modulation
(PWM) supplies the reactive power required to improve
the quality of the motor currents in order to compensate
them into sine wave form.

For the case of the logic state machine in state 2, only
the current source inverter is working, the inverter currents
are synchronized with respect to the control variables of
the stator-current d-q components. The Transition from
state 1 to state 2 is made when the Voltage Source Inverter
fails and the control structure need to be reconfigured in
order to be able to control the AC drive with the Current
Source Inverter. State 3 (represented in Fig. 1) could be
another configuration of the vector control system when
the CSI fails and only the Voltage Source Inverter has to
control the motor.

A possible representation of the transition from one state
to the other, in fact, may be a demultiplexer and a
multiplexer, but one should note that, these components
might be carried out in reality, while they are intended to
be abstract entities, which did not need any implementation
at all [3].

One may observe in the module analysis, that the flux
computation modules are common in both control schemes
and so they will be one of the most used modules in the
module library. As the three flux-computation modules can
be computed in a single equation, they will represent a
single module, with the following equation:

() () ()[] sdrsrsdssdrrd iLLdtiRu σσσσ ++−−+=Ψ ∫ 11 (1.a)

() () ()[] sqrsrsqssqrrq iLLdtiRu σσσσ ++−−+=Ψ ∫ 11 (1.b)

In this way in the module library for the flux
computation we will have one module, but when it is
needed can easily be created all the modules needed for the

flux computation (Ψsd,q, Ψmd.q, Ψrd,q) separating the stator
field computation (Ψsd,q) and the flux compensation
modules (Ψmd,q, Ψrd,q). In addition, the library can handle
both flux oriented control schemes, such as rotor flux
oriented and stator flux oriented vector control system for
any converter fed AC drive.

One of the most common modules (often-used modules)
is the Vector Analyser (VA), and as is illustrated in Fig. 2.
It is used to compute different modulus of different
parameters. Its equations given in the general forms as
follows:

g

g
cos;

g

g
sin;ggg dq

qd ==+= λλ22 (2.)

The other two modules, which are common in many
control structures, are the Coordinate transformation
modules (CooT[D(λ)], CooT[D(-λ)]) with the general
equation:

;singcosgg rsqrsdrsd λλλ ±= (3.a)

;singcosgg rsdrsqrsq λλλ m= (3.b)

One should mention also the other common modules
such as the Phase Transformation module (PhT[A] and
PhT[A]-1 - for current and voltage). These modules again
are general computation modules.

For all the mentioned modules when reconfiguration
occurs there is no need for parameter transfer as they do all
the computation for the actual sampled values.

The modules where one have to consider the parameter
transfer is for example the so called control strategy block,
represented in this case by the PI controllers of speed,
current and torque. These modules are called together
“control strategy block”, as they can be realised in many
ways. The control strategy can be implemented using fuzzy

logic, neural networks, or other intelligent control
methods.

The most critical part of the reconfiguration is the
parameter transfer of the PI controllers. In the case when
(as in Fig. 2) the output variables of the controllers are
different in each state (in one case this is the current

reference Ref

rq,sd
i

λ
, and on the other case is the voltage

reference Ref
rq,sdv λ), the parameter transfer cannot be solved.

This explains why the reconfiguration method applied here
is context switching.

From the analysis, results, that a module library can be
created for fast modelling. The modularity is important
when the implementation target is reconfigurable hardware
such as Field Programmable Gate Arrays (FPGAs) or
Configurable System on a Chip (CSoC) [10].

III. MODULE LIBRARY CHARACTERISTICS

The creation of a module library was motivated by the

fact that the simulation of the reconfiguration process it is
not possible or it is difficult while no tools exist for this
kind of simulation. On the other hand recently it has
become possible to implement digital signal processing
algorithms on FPGAs directly from Matlab Simulink®
environment.

This possibility gave the idea to implement the
mentioned module library, which is completely
parametrisable and any change on the vector control
system’s structure can be applied very fast and easy in the
implementation hardware.

The elements of the library are the most common
modules of vector control systems (as described in the
previous paragraph), and each present a standalone unit in
the library. As result of this independency, the vector
control system can be synthesised module by module or as
a whole.

Most of vector control system implementations use 16
bit two’s complement fixed-point data format. Here this
format was also adopted for the input variables of each
module. Inside the module for constant representation it
was adopted the same data format, but the binary point has
variable position, depending on the motor parameters.

The major advantage of using the module library (when
implementation is targeted) is: the computation speed
increase. This results from the parallel algorithm
computation of both components (d, q) and the parallel
computation of each module. This would be a significant
advantage compared to the DSP sequential
implementations.

IV. SIMULATION AND RAPID PROTOTYPING WITH

MODULE LIBRARY

Theoretically with the created module library, any

vector control system can be tested, simulated, and
implemented. Using the module library in this way a
vector control system can be implemented in short time
based on reconfigurable hardware.

The motor data used for simulation are: 5.5 kW, 50 Hz,
220 V r.m.s., 14 A r.m.s. and 4 pole-pairs. The simulation
was performed for the presented vector control system

structures as follows:
• First: The configuration of State 1 – CSI+VSI

driven AC drive was simulated, then the
configuration of Sate 2 – CSI driven AC drive
was simulated.

• Second: The simulation performed for the
reconfiguration process. The motor started in
State 1 and after 0.5s was reconfigured to
State 2.

The results compared with simulation results produced
by the simulation model done with Simulink models. One
can conclude that some parameters are working better with
the module library (for example the PI implementation),
but in some cases, the quantisation errors were not
satisfactory against our expectancies.

The following diagrams show the simulation results for
the running motor and reconfiguration applied after start at
time 0.5s.

Fig. 3 shows the stator current waveform resultant as
the sum of the output current of the CSI inverter and the
output current of the VSI inverter. Also the figure shows
that after reconfiguration the stator current results as the
sum of CSI output currents and the capacitor currents. Fig.
4 to Fig. 6 represents several space-phasors of the output
currents, CSI and VSI space-phasors. Fig. 7 and Fig. 8
represents the computed rotor-flux space-phasor and the
resultant stator-flux space-phasor. While the resultant
stator flux and computed rotor flux is represented in Fig.
10. Fig. 9 shows the resultant stator-terminal-voltage
space-phasor. The reconfiguration of the control structure
(i.e when the VSI fails and the CSI will work alone) it is
observable in all the figures. The reconfiguration effects
are observable also in the motor parameters (speed and
torque) as shown in Fig. 11and Fig. 12.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
50

100

150

200

S
ta

to
r

C
ur

re
nt

 [
A

]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-100

-50

0

50

C
S

I
C

ur
re

nt
 [

A
]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-150

-100

-50

0

V
S

I-
C

 C
ur

re
nt

 A
]

time [s]
Fig. 3. Current waveforms before and after reconfiguration.

0
0.2

0.4
0.6

0.8
1

-50

0

50
-40

-20

0

20

40

60

time[s]Stator current
q
[A]

S
ta

to
r

cu
rr

en
d
[A

]

Fig. 4. Motor Stator-current space-phasor.

0
0.2

0.4
0.6

0.8
1

-50

0

50
-40

-20

0

20

40

60

time[s]Stator current
q
[A]

S
ta

to
r

cu
rr

en
d
[A

]

Fig. 5. Current-Source Inverter output current space-phasor.

0
0.2

0.4
0.6

0.8
1

-100

-50

0

50
-50

0

50

100

time[s]VSI or Capacitor current
q
[A]

V
S

I
or

 C
ap

ac
ito

r
cu

rr
en

t d
[A

]

Fig. 6. VSI or Capacitor output-current space phasor.

0
0.2

0.4
0.6

0.8
1

-1

-0.5

0

0.5

1
-1

-0.5

0

0.5

1

time[s]Computed rotor-flux
q
[Wb]

C
om

pu
te

d
ro

to
r-

flu
x d

[W
b]

Fig. 7. Computed rotor-flux space-phasor.

0
0.2

0.4
0.6

0.8
1

-1

-0.5

0

0.5

1
-1

-0.5

0

0.5

1

1.5

time[s]Resulting stator-flux
q
[Wb]

R
es

ul
tin

g
st

at
or

-f
lu

x d
[W

b]

Fig. 8. Resulting stator-flux space-phasor.

0
0.2

0.4
0.6

0.8
1

-400

-200

0

200

400
-500

0

500

time[s]Stator terminal-voltage
q
[V]

S
ta

to
r

te
rm

in
al

-v
ol

ta
ge

[V
]

Fig. 9. Resultant Stator-terminal-voltage space-phasor.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

R
es

ul
ta

nt
R

ot
or

-f
lu

x[
W

b]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

C
om

pu
te

d
R

ot
or

-f
lu

x[
W

b]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

R
es

ul
ta

nt
S

ta
to

r-
flu

x[
W

b]

time[s]
Fig. 10. Resultant, Computed rotor-flux and resultant stator-flux.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-50

0

50

100

E
le

ct
ric

an
gu

la
r

sp
ee

d[
ra

d/
s]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-50

0

50

100

150

E
le

ct
ro

m
ag

ne
tiq

ue
to

rq
ue

[N
m

]

time[s]
Fig. 11. Electric angular speed and electromagnetic torque.

-20 0 20 40 60 80 100 120 140
-20

0

20

40

60

80

100

Torque [Nm]

S
pe

ed
 [

ra
d/

s]

Fig. 12. Resultant dynamic speed-torque mechanical diagram.

The method used for reconfiguration was the context
switching method previously named ping-pong [2]. In this
case, there is no need for parameter transfer at all, as both
vector control systems are working in parallel and all the
modules also are working in parallel. This allows us to
exploit all the parallelism of the vector control algorithm
and the implementation possibilities in FPGA.

V. IMPLEMENTATION POSIBILITIES

Comparing the performances of implemented modules,

there one have to consider the following: the evolution of
the module computation compared to the model, the
quantisation error produced by the module, the time delay
introduced by the module, the hardware resources
occupied when the module is implemented. On the
following we analyse some modules considering the
mentioned criteria.

For a simplified analysis of the modules the simulation
for the vector control scheme in Fig. 2 was performed
without reconfiguration and for the tandem converter
structure, which corresponds for selection 1 of the
multiplexer inputs. The simulation performed for 1 second
and at 0,35s it is observable a speed inversion.

Fig. 13, Hiba! A hivatkozási forrás nem található. and
Fig. 14, represents the the d-component evolution of the
Flux Controller and inverse coordinate transformation
CooT[D(-λ)] respectively. The output q component of the
module CooT[D(-λ)] is also presented in Fig. 15. As result
from the figures (Fig. 13 -Fig. 14), there is no significant
difference between the simulation and the output variable
resultant from the library module computation. The
quantisation error of the computed variables are minimal
excepting the module CooT[D(-λ)], where the quantisation
error of the reference voltage Usd is between –5 and +5.
Even under these circumstances the results are promising.

The time delay and the hardware resource consumed by
the analysed modules are presented in TABLE 1

TABLE 1.

HARDWARE RESOURCES CONSUMED AND TIME DELEY
INTRODUCED BY THE MODULE FLUX CONTROLLER

Release 4.1.03i - Map E.33
Xilinx Mapping Report File for Design
Design Information

Command Line: map -p xc2v40-cs144-6 -cm area -pr b -k 4 -c 100 -tx off
Target Device: x2v40
Target Package: cs144
Target Speed: -6
Mapped Date: Tue Mar 26 15:16:39 2002
Design Summary

Number of Slices: 24 out of 256 9%
Number of Slices containing
unrelated logic: 0 out of 24 0%
Total Number 4 input LUTs: 24 out of 512 4%
Number used as Shift registers: 24
IOB Flip Flops: 24
Number of GCLKs: 1 out of 16 6%
Total equivalent gate count for design: 5,731
The Average Connection Delay for this design is: 1.283 ns
The Maximum Pin Delay is: 4.126 ns
The Average Connection Delay on the 10 Worst Nets is: 1.614 ns
Listing Pin Delays by value: (ns)
d < 1.00 < d < 2.00 < d < 3.00 < d < 4.00 < d < 5.00 d >= 5.00
178 68 22 9 1 0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

15

20

25

S
im

ul
at

ed
O

ut
pu

t
cu

rr
en

t
of

flu
x

co
nt

ro
lle

r
[A

]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

15

20

25

C
om

pu
te

d
O

ut
pu

t
cu

rr
en

t
of

flu
x

co
nt

ro
lle

r[
A

]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

Q
ua

nt
is

at
io

n
er

ro
r

of
 t

he
 c

om
pu

te
d

ou
tp

ut
 c

ur
re

nt

time[s]
Fig. 13. Outputs of the modelled and implemented flux PI controller and

the resultant quantisation error.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-2

0

2

S
im

ul
at

ed
O

ut
pu

t
V

ol
ta

ge
d

of
 t

he
 C

oo
T

[D
(-

l)]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-2

0

2

C
om

pu
te

d
O

ut
pu

t
V

ol
at

ge
d

of
 t

he
 C

oo
T

[D
(-

l)]
 [

V
]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-5

0

5

10
x 10

-4

Q
ua

nt
is

at
io

n
er

ro
r

of
 t

he
 c

om
pu

te
d

ot
up

ut
 v

ol
ta

ge

time[s]
Fig. 14. Output Voltage Reference d component of the module Inverse

coordinate transformation CooT[D(-λ)].

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-2

0

2

S
im

ul
at

ed
O

ut
pu

t
V

ol
ta

ge
q

of
 t

he
 C

oo
T

[D
(-

l)]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-2

0

2

C
om

pu
te

d
O

ut
pu

t
V

ol
ta

ge
q

of
 t

he
 C

oo
T

[D
(-

l)]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1

0

1
x 10

-3

Q
ua

nt
is

at
io

n
er

ro
r

of
 t

he
 c

om
pu

te
d

ou
tp

ut
 v

ol
ta

ge

time[s]
Fig. 15. Output Voltage Reference q component of the module Inverse

coordinate transformation CooT[D(-λ)].

0
0.2

0.4
0.6

0.8
1

-500

0

500

1000
-600

-400

-200

0

200

400

time[s]Output Voltage V
sq

[V]

O
ut

pu
t

V
ol

ta
ge

 V
sd

[V
]

Fig. 16. Computed Stator-terminal-reference voltage space-phasor of

module CooT[D(-λ)]

TABLE 2.
HARDWARE RESOURCES CONSUMED AND TIME DELEY

INTRODUCED BY THE MODULE CooT[D(-λ)]

Release 4.1.03i - Map E.33
Xilinx Mapping Report File for Design
Design Information

Number of Slices: 25 out of 3,072 20%
Number of Slices containing
unrelated logic: 0 out of 625 0%
Total Number 4 input LUTs: 1,222 out of 6,144 19%
Number used as LUTs: 1,208
Number used as a route-thru: 14
Total equivalent gate count for design: 15,579
The Delay Summary Report
The Score for this design is: 5342
The Average Connection Delay for this design is: 1.969 ns
The Maximum Pin Delay is: 10.256 ns
The Average Connection Delay on the 10 Worst Nets is:
 7.306 ns
Listing Pin Delays by value: (ns)
d<2.00< d<4.00 < d<6.00 < d< 8.00 < d < 11.00 d >=11.00
2432 1211 395 92 6 0

As observed from the tables the hardware resources
consumed by the modules flux controller and inverse
coordinate transformation are significant, and this may be a
disadvantage of the developed module library, while the
time delay introduced by the module is a positive result,
which have to be considered when computation speed is
important.

VI. CONCLUSIONS

The created module library like other Matlab® tools,

helps the development of rapid model based vector control
systems for AC drives. The module parameters are freely
modifiable on demand. It allows the simulation of the
reconfiguration process and effects on the AC drive.

VII. AKNOWLEDGMENT

A research project in the subject of the “tandem

inverter” was realized at the Institute of Energy
Technology, Aalborg University, Denmark. Special thanks
to Prof. A. Trzynadlowski from Nevada University, Reno,
USA for the collaboration in this theme, to Prof. F.
Blaabjerg from the Aalborg University and to the Danfoss
Drive A/S, Denmark for their generous support.

The authors are grateful to Triscend Inc. and Xilinx Inc.
for donations, which made possible the research on some
aspects of reconfigurable vector control framework.

VIII. REFERENCES

[1] Mária Imecs, P. Bikfalvi, S. Nedevschi, J. Vásárhelyi
“Implementation of a Configurable Controller for an

AC Drive Control a Case Study”, Proceedings of
IEEE Symposium on FPGAs for Custom Computing

Machines FCCM 2000, Napa, California, USA,
2000, pp. 323-324.

[2] Mária Imecs, J. J. Incze, J. Vásárhelyi, Cs. Szabó
“Vector Control Of Tandem Converter Fed Induction
Motor Drive Using Configurable System On A
Chip”, INES 2001 IEEE International Conference on
Intelligent Engineering Systems, September 16-18,
2001, Helsinki-Stockholm-Helsinki, Finland-
Sweden, pp. 489-495.

[3] Mária Imecs, J. Vásárhelyi, J. J. Incze, Cs. Szabó,
“Tandem Converter Fed Induction Motor Drive
Controlled With Re-Configurable Vector Control
System”, Power Electronics Intelligent Motion
Power Quality Conference PCIM 2001, Nürnberg,
Germany, pp. 341-346

[4] Mária Imecs “Open-Loop Voltage-Controlled PWM
Procedures”, ELECTROMOTION’99, Patras, Greece,
Vol. I, pp. 285-290

[5] Á. Kelemen., Mária Imecs “Vector control of AC
Drives”, OMIKK publisher Budapest, ISBN 963-
593-140-9, Budapest, 1991, pp.304.

[6] A. Sanders “The Design and Implementation of
Context Switching FPGA”, IEEE Symposium on
FPGAs for Custom Computing Machines FCCM
1998, Los Alamitos California, USA, April 15-17,
1998, pp. 78-85.

[7] A. M. Trzynadlowski, F. Blaabjerg, J. K. Pedersen,
Niculina Patriciu “The Tandem Inverter: Combining
the Advantages of Voltage-Source and Current-
Source Inverters”, Applied Power Electronics
Conference, APEC’98, Anaheim, USA, pp.315-320.

[8] A. M. Trzynadlowski, Mária Imecs, Niculina Patriciu
“Modelling and Simulation of inverter Topologies
Used in AC Drives: Comparison and Validation of
Models”, ELECTRIMACS’99, Volume I/3, Lisboa,
Portugal, 1999, pp. 47-52.

[9] J. Vásárhelyi, Mária Imecs, J.J. Incze “Run-time
Reconfiguration of Tandem Inverter used in
Induction Motor Drives”, Proceedings of Symposium
on Intelligent Systems in Control and Measurement,
Veszprém, Hungary, 2000, pp. 138-143.

[10] J. Vásárhelyi “Run-Time Reconfiguration of AC
Drive Controllers”, Dagstuhl Seminar 0261 on
Dynamically Reconfigurable Architectures, June,
2000, Germany, http://www.ee.qub.ac.uk/dsp/HsD/fpl/.

