
 

Module Library for Rapid Prototyping and Hardware Implementation of Vector 
Control Systems 

József Vásárhelyi Mária Imecs 
Department of Automation Department of Electric Drives and Robots 

University of Miskolc Technical University of Cluj 
H-3515 Miskolc Egyetemváros 3400 Cluj-Napoca, PO.1, Box 99 

Hungary Romania 
vajo@mazsola.iit.uni-miskolc.hu Maria.Imecs@edr.utcluj.ro 

  

János J. Incze Csaba Szabó 
Department of Electric Drives and Robots Department of Electric Drives and Robots 

Technical University of Cluj Technical University of Cluj 
3400 Cluj-Napoca, PO.1, Box 99 3400 Cluj-Napoca, PO.1, Box 99 

Romania Romania 
Incze@edr.utcluj.ro Csaba.Szabo@edr.utcluj.ro 

 
Abstract – The paper focuses on the implementation of a 
module library for vector control systems of AC drive. The 
rapid prototyping and fast implementation of vector control 
systems becomes possible with the created module library. 
The control system structures are implemented in 
configurable logic cells using Field Programmable Gate 
Array (FPGA). The performances of the created control 
structures were compared with other simulation results. 
 

I. INTRODUCTION 
 

Most motor control applications concern with vector 
control for AC drives. Vector control systems for induction 
motors give the best dynamic behaviour. Analysing these 
systems some modularity can be observed, which help fast 
implementation of motor control applications in 
reconfigurable structures [3], [10]. 

Reconfigurable hardware was used in vector control in 
the last years for control system implementations. We 
speak about dynamic reconfiguration of vector control 
systems for AC drives when the real-time application 
(software) changes the computing platform structure 
(hardware). In vector control systems, the reconfigurability 
was introduced by Imecs et all. in [1]. In this concept, each 
configuration is considered as a state of a logic state 
machine. When reconfiguration condition occurs, the 
system will start reconfiguration process in which it 
switches the current configuration to the next 
corresponding one. This type of configuration is the 
context switching and was developed by Sanders in [6]. 
While context switching is a reconfiguration technology 
for Field Programmable Gate Arrays (FPGA), the logic 
state machine with different control system structure in 
each state is a reconfiguration method for vector control 
systems presented in the following figure: 
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Fig. 1. State machine with different vector control structures in each state. 

In order to make the reconfiguration possible, there is a 
need a close analysis of the known control structures. 
Kelemen and Imecs in [5] presented most of the known 
control structures for AC drive. A part of the analysis is 
presented in the next section.  
 

II. VECTOR CONTROL SCHEME ANALYSIS 
 
The dynamic behaviour of the AC machines is improved 

by vector control procedures based on the field-orientation 
principle. The necessity of reconfiguration is based on the 
observation that the performance of the drive is depending 
on the vector control structure correlated with the type of 
the supply power frequency converter [9], [10]. 

The analysis of the control schemes was performed 
based on the following criteria: 
•  Given two vector control structures when common 

modules exist: 
o Which are the common modules in the same 

position with the same function? 
o Which are the common modules with different 

functionality? 
o Which are the particular modules of each 

reconfigurable structure? 
•  When reconfiguration condition occurs, is it possible 

the parameter transfer for the modules on the same 
position or no parameter transfer allowed? 

•  Is the parameter transfer of the PI controllers of the 
different schemes possible? 

•  Is it possible to give a general mathematical form of 
all the modules? 

•  Resulting from the analyses, the module library should 
be universal for rapid prototyping of any vector 
control system and from the prototype the 
implementation should directly result  

Let us analyse such a reconfigurable vector control 
structure for AC drives with two configurable states. This 
vector control structure presents the generalities of the 
most common control schemes and in the meantime 
contains some particular modules. The reconfigurable state 
machine presented in Fig. 1 for the vector control structure 
presented in Fig. 2 is working in state 1 as a tandem 
converter [7], [8], [9]. The tandem converter is working 
with two inverters. The two inverters are: Current Source 
Inverter (CSI), which is controlled in current, and the other 
the Voltage Source Inverter (VSI) is controlled in voltage. 
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Fig. 2. Reconfigurable vector control structure with two configuration states. 

 
In this way the VSI controlled by Pulse-Width Modulation 
(PWM) supplies the reactive power required to improve 
the quality of the motor currents in order to compensate 
them into sine wave form. 

For the case of the logic state machine in state 2, only 
the current source inverter is working, the inverter currents 
are synchronized with respect to the control variables of 
the stator-current d-q components. The Transition from 
state 1 to state 2 is made when the Voltage Source Inverter 
fails and the control structure need to be reconfigured in 
order to be able to control the AC drive with the Current 
Source Inverter. State 3 (represented in Fig. 1) could be 
another configuration of the vector control system when 
the CSI fails and only the Voltage Source Inverter has to 
control the motor.  

A possible representation of the transition from one state 
to the other, in fact, may be a demultiplexer and a 
multiplexer, but one should note that, these components 
might be carried out in reality, while they are intended to 
be abstract entities, which did not need any implementation 
at all [3]. 

One may observe in the module analysis, that the flux 
computation modules are common in both control schemes 
and so they will be one of the most used modules in the 
module library. As the three flux-computation modules can 
be computed in a single equation, they will represent a 
single module, with the following equation: 

( ) ( ) ( )[ ] sdrsrsdssdrrd iLLdtiRu σσσσ ++−−+=Ψ ∫ 11   (1.a) 

( ) ( ) ( )[ ] sqrsrsqssqrrq iLLdtiRu σσσσ ++−−+=Ψ ∫ 11  (1.b) 

In this way in the module library for the flux 
computation we will have one module, but when it is 
needed can easily be created all the modules needed for the 

flux computation (Ψsd,q, Ψmd.q, Ψrd,q) separating the stator 
field computation (Ψsd,q) and the flux compensation 
modules (Ψmd,q, Ψrd,q). In addition, the library can handle 
both flux oriented control schemes, such as rotor flux 
oriented and stator flux oriented vector control system for 
any converter fed AC drive. 

One of the most common modules (often-used modules) 
is the Vector Analyser (VA), and as is illustrated in Fig. 2. 
It is used to compute different modulus of different 
parameters. Its equations given in the general forms as 
follows: 

g

g
cos;

g

g
sin;ggg dq

qd ==+= λλ22  (2.) 

The other two modules, which are common in many 
control structures, are the Coordinate transformation 
modules (CooT[D(λ)], CooT[D(-λ)]) with the general 
equation: 

;singcosgg rsqrsdrsd λλλ ±=  (3.a) 

;singcosgg rsdrsqrsq λλλ m=  (3.b) 

One should mention also the other common modules 
such as the Phase Transformation module (PhT[A] and 
PhT[A]-1 - for current and voltage). These modules again 
are general computation modules. 

For all the mentioned modules when reconfiguration 
occurs there is no need for parameter transfer as they do all 
the computation for the actual sampled values. 

The modules where one have to consider the parameter 
transfer is for example the so called control strategy block, 
represented in this case by the PI controllers of speed, 
current and torque. These modules are called together 
“control strategy block”, as they can be realised in many 
ways. The control strategy can be implemented using fuzzy 



 

 

logic, neural networks, or other intelligent control 
methods.  

The most critical part of the reconfiguration is the 
parameter transfer of the PI controllers. In the case when 
(as in Fig. 2) the output variables of the controllers are 
different in each state (in one case this is the current 

reference Ref

rq,sd
i

λ
, and on the other case is the voltage 

reference Ref
rq,sdv λ ), the parameter transfer cannot be solved. 

This explains why the reconfiguration method applied here 
is context switching. 

From the analysis, results, that a module library can be 
created for fast modelling. The modularity is important 
when the implementation target is reconfigurable hardware 
such as Field Programmable Gate Arrays (FPGAs) or 
Configurable System on a Chip (CSoC) [10]. 

 
III. MODULE LIBRARY CHARACTERISTICS 
 
The creation of a module library was motivated by the 

fact that the simulation of the reconfiguration process it is 
not possible or it is difficult while no tools exist for this 
kind of simulation. On the other hand recently it has 
become possible to implement digital signal processing 
algorithms on FPGAs directly from Matlab Simulink® 
environment. 

This possibility gave the idea to implement the 
mentioned module library, which is completely 
parametrisable and any change on the vector control 
system’s structure can be applied very fast and easy in the 
implementation hardware. 

The elements of the library are the most common 
modules of vector control systems (as described in the 
previous paragraph), and each present a standalone unit in 
the library. As result of this independency, the vector 
control system can be synthesised module by module or as 
a whole. 

Most of vector control system implementations use 16 
bit two’s complement fixed-point data format. Here this 
format was also adopted for the input variables of each 
module. Inside the module for constant representation it 
was adopted the same data format, but the binary point has 
variable position, depending on the motor parameters. 

The major advantage of using the module library (when 
implementation is targeted) is: the computation speed 
increase. This results from the parallel algorithm 
computation of both components (d, q) and the parallel 
computation of each module. This would be a significant 
advantage compared to the DSP sequential 
implementations. 

 
IV. SIMULATION AND RAPID PROTOTYPING WITH 

MODULE LIBRARY 
 
Theoretically with the created module library, any 

vector control system can be tested, simulated, and 
implemented. Using the module library in this way a 
vector control system can be implemented in short time 
based on reconfigurable hardware. 

The motor data used for simulation are: 5.5 kW, 50 Hz, 
220 V r.m.s., 14 A r.m.s. and 4 pole-pairs. The simulation 
was performed for the presented vector control system 

structures as follows: 
•  First: The configuration of State 1 – CSI+VSI 

driven AC drive was simulated, then the 
configuration of Sate 2 – CSI driven AC drive 
was simulated. 

•  Second: The simulation performed for the 
reconfiguration process. The motor started in 
State 1 and after 0.5s was reconfigured to 
State 2. 

The results compared with simulation results produced 
by the simulation model done with Simulink models. One 
can conclude that some parameters are working better with 
the module library (for example the PI implementation), 
but in some cases, the quantisation errors were not 
satisfactory against our expectancies. 

The following diagrams show the simulation results for 
the running motor and reconfiguration applied after start at 
time 0.5s.  

Fig. 3 shows the stator current waveform resultant as  
the sum of the output current of the CSI inverter and the 
output current of the VSI inverter. Also the figure shows 
that after reconfiguration the stator current results as the 
sum of CSI output currents and the capacitor currents. Fig. 
4 to Fig. 6 represents several space-phasors of the output 
currents, CSI and VSI space-phasors. Fig. 7 and Fig. 8 
represents the computed rotor-flux space-phasor and the 
resultant stator-flux space-phasor. While the resultant 
stator flux and computed rotor flux is represented in Fig. 
10. Fig. 9 shows the resultant stator-terminal-voltage 
space-phasor. The reconfiguration of the control structure 
(i.e when the VSI fails and the CSI will work alone) it is 
observable in all the figures. The reconfiguration effects 
are observable also in the motor parameters (speed and 
torque) as shown in Fig. 11and Fig. 12. 
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Fig. 3. Current waveforms before and after reconfiguration. 
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Fig. 4. Motor Stator-current space-phasor. 
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Fig. 5. Current-Source Inverter output current space-phasor. 

0
0.2

0.4
0.6

0.8
1

-100

-50

0

50
-50

0

50

100

time[s]VSI or Capacitor current
q
[A]

V
S

I 
or

 C
ap

ac
ito

r 
cu

rr
en

t d
[A

]

 
Fig. 6. VSI or Capacitor output-current space phasor. 
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Fig. 7. Computed rotor-flux space-phasor. 
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Fig. 8. Resulting stator-flux space-phasor. 
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Fig. 9. Resultant Stator-terminal-voltage space-phasor. 
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Fig. 10. Resultant, Computed rotor-flux and resultant stator-flux. 
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Fig. 11. Electric angular speed and electromagnetic torque. 
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Fig. 12. Resultant dynamic speed-torque mechanical diagram. 



 

 

The method used for reconfiguration was the context 
switching method previously named ping-pong [2]. In this 
case, there is no need for parameter transfer at all, as both 
vector control systems are working in parallel and all the 
modules also are working in parallel. This allows us to 
exploit all the parallelism of the vector control algorithm 
and the implementation possibilities in FPGA. 

 
V. IMPLEMENTATION POSIBILITIES 

 
Comparing the performances of implemented modules, 

there one have to consider the following: the evolution of 
the module computation compared to the model, the 
quantisation error produced by the module, the time delay 
introduced by the module, the hardware resources 
occupied when the module is implemented. On the 
following we analyse some modules considering the 
mentioned criteria. 

For a simplified analysis of the modules the simulation 
for the vector control scheme in Fig. 2 was performed 
without reconfiguration and for the tandem converter 
structure, which corresponds for selection 1 of the 
multiplexer inputs. The simulation performed for 1 second 
and at 0,35s it is observable a speed inversion. 

Fig. 13, Hiba! A hivatkozási forrás nem található. and 
Fig. 14, represents the the d-component evolution of the 
Flux Controller and inverse coordinate transformation 
CooT[D(-λ)] respectively. The output q component of the 
module CooT[D(-λ)] is also presented in Fig. 15. As result 
from the figures (Fig. 13 -Fig. 14), there is no significant 
difference between the simulation and the output variable 
resultant from the library module computation. The 
quantisation error of the computed variables are minimal 
excepting the module CooT[D(-λ)], where the quantisation 
error of the reference voltage Usd is between –5 and +5. 
Even under these circumstances the results are promising. 

The time delay and the hardware resource consumed by 
the analysed modules are presented in TABLE 1 

TABLE 1.  

HARDWARE RESOURCES CONSUMED AND TIME DELEY 
INTRODUCED BY THE MODULE FLUX CONTROLLER 

Release 4.1.03i - Map E.33 
Xilinx Mapping Report File for Design 
Design Information 
----------------------------------------------------------------------------------------- 
Command Line: map -p xc2v40-cs144-6 -cm area -pr b -k 4 -c 100 -tx off 
Target Device: x2v40 
Target Package: cs144 
Target Speed: -6 
Mapped Date: Tue Mar 26 15:16:39 2002 
Design Summary 
----------------------------------------------------------------------------------------- 
Number of Slices: 24 out of 256 9% 
Number of Slices containing 
unrelated logic:   0 out of 24 0% 
Total Number 4 input LUTs: 24 out of 512 4% 
Number used as Shift registers: 24 
IOB Flip Flops:  24 
Number of GCLKs:  1 out of 16  6% 
Total equivalent gate count for design:  5,731 
The Average Connection Delay for this design is:    1.283 ns 
The Maximum Pin Delay is:      4.126 ns 
The Average Connection Delay on the 10 Worst Nets is: 1.614 ns 
Listing Pin Delays by value: (ns) 
d < 1.00   < d < 2.00  < d < 3.00  < d < 4.00  < d < 5.00  d >= 5.00 
178 68 22 9 1 0 
___________________________________________________________ 
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Fig. 13. Outputs of the modelled and implemented flux PI controller and 

the resultant quantisation error. 
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Fig. 14. Output Voltage Reference d component of the module Inverse 

coordinate transformation  CooT[D(-λ)]. 
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Fig. 15. Output Voltage Reference q component of the module Inverse 

coordinate transformation  CooT[D(-λ)]. 
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Fig. 16. Computed Stator-terminal-reference voltage space-phasor of 

module CooT[D(-λ)] 



 

 

TABLE 2. 
HARDWARE RESOURCES CONSUMED AND TIME DELEY 

INTRODUCED BY THE MODULE CooT[D(-λ)] 
 
Release 4.1.03i - Map E.33 
Xilinx Mapping Report File for Design 
Design Information 
----------------------------------------------------------------------- 
Number of Slices:    25 out of 3,072 20% 
Number of Slices containing 
unrelated logic:       0 out of 625 0% 
Total Number 4 input LUTs: 1,222 out of 6,144 19% 
Number used as LUTs:      1,208 
Number used as a route-thru: 14 
Total equivalent gate count for design: 15,579 
The Delay Summary Report 
The Score for this design is: 5342 
The Average Connection Delay for this design is: 1.969 ns 
The Maximum Pin Delay is: 10.256 ns 
The Average Connection Delay on the 10 Worst Nets is: 
   7.306 ns 
Listing Pin Delays by value: (ns) 
d<2.00< d<4.00 < d<6.00 < d< 8.00 < d < 11.00 d >=11.00 
2432 1211 395 92    6        0 
 

As observed from the tables the hardware resources 
consumed by the modules flux controller and inverse 
coordinate transformation are significant, and this may be a 
disadvantage of the developed module library, while the 
time delay introduced by the module is a positive result, 
which have to be considered when computation speed is 
important. 

VI. CONCLUSIONS 
 
The created module library like other Matlab® tools, 

helps the development of rapid model based vector control 
systems for AC drives. The module parameters are freely 
modifiable on demand. It allows the simulation of the 
reconfiguration process and effects on the AC drive. 
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