
 MODELLING VECTOR CONTROL SYSTEM
RECONFIGURATION

József VÁSÁRHELYI1, Maria IMECS2, Ioan I. INCZE2, Csaba SZABÓ2
1 Department of Automation University of Miskolc

H-3515 Miskolc Egyetemváros, Hungary
vajo@mazsola.iit.uni-miskolc.hu

2 Technical University of Cluj-Napoca
P.O. 1, Box 99, RO-3400, Cluj-Napoca, Romania
{imecs, Ioan.Incze, Csaba.Szabo}@edr.utcluj.ro

Abstract: To apply run-time reconfiguration there is need for an appropriate model to
understand reconfiguration. System on chip technology allowed the use of complex low
gate/price new type of FPGA. Modelling reconfiguration and using Matlab tools is possible
to simulate and rapid prototype vector control systems. The paper presents the
reconfigurable models as introduced by Luk, Cheung, Shirazi and Athanas and will present
the reconfiguration model for vector control systems.

Keywords: run-time reconfiguration, rapid prototyping, simulation, reconfigurable logic,
field-orientation principle, vector control, variable speed drives.

1. Introduction

Configurable computing achieving high performance improvements found its wide
range of applications like image processing, fuzzy controllers, compression, morphology,
feature extraction, object tracking, computational chemistry, AC drive control, etc.[1.], [2.].
In this paper, we will consider some general aspects of the reconfiguration and the run-time
reconfiguration modelling aspects will be treated.

The performance improvement results in magnitude improvement over
microprocessors. The so called final performance approved by an application implemented
in reconfigurable support depends not only the hardware itself, but also the availability of
strong parallel resources as well as on the development environments (CAD support,
compiler). Therefore, two main aspects have to be considered when customized
reconfigurable computing systems are built [3.]:

• Control Structures and the data dependency of future applications have to be
reconsidered in order to identify simultaneously occurring operations for higher
performances [2.].

• The availability and possibility of such ‘programmable platforms’ structure is
essential. Obviously, there exists a so called ‘software gap’ between software
compilers and compilers for custom computing machines [4.].

One of the limitations of contemporary FPGAs is the reconfiguration mechanism.
There are primary approaches commonly adopted:

• serial configuration: In devices using serial configuration, the configuration
storage elements are connected as a large scan chain around the entire chip.
During configuration, the programming information is loaded into the device and
shifted throughout in a bit wise manner.

• parallel configuration: parallel loading of the configuration data is possible with
some devices, close examination of the timing employed by these devices reveals
an internally serial architecture. Most often, the entire chip must be programmed
in such fashion before any part of it may be used to perform computation.

• context switching configuration: several configuration data is stored in the
configuration memory of the chip or outside the chip and the reconfiguration of
the chip is made by switching between the stored configuration contexts.

• random access configuration: this type of configuration mode can be applied to
any of previous configurations at any time not necessarily as part of the power up
process.

To allow run-time reconfiguration it is necessary to construct corresponding
reconfiguration models. In particular, an appropriate model is necessary to provide the basis
for techniques involved in producing efficient reconfigurable systems and in analysing their
tradeoffs. Luk introduced some reconfiguration models in [5.]. An overview of the
introduced reconfiguration models will be given in the following section.

2. Modelling Reconfiguration

An appropriate model is often the key to understand a new technology and to
exploiting it effectively. The main difficulty in understanding reconfiguration is its dynamic
nature. First, a simple model was proposed by Luk, which uses a static network to capture
this dynamic behaviour [5.].

The basic idea is straightforward. A block that can be configured to behaved either as
P or as Q function is described by a network with P and Q sandwiched between two control
blocks C and C’. C and C’ are responsible for routing the data and results from the external
ports x and y to either P or Q at the desired instant; the choice can be determined by run-
time conditions. Possible implementations of C and C’ may be a demultiplexer and a
multiplexer, but one should note that, while these components may indeed be possible
implementations, C and C’ are intended to be abstract entities, which need not be
implementable [5.].

Run-time reconfiguration is done while the system executes the designated task. To
improve system performances pipeline reconfiguration technique was suggested by Bittner
and Athanas in [6.].

2.1. Pipeline morphing and Virtual Pipelines

Pipeline morphing is simple but effective technique for reconfiguring pipelined FPGA
designs at run-time. By overlapping computation and reconfiguration, the latency
associated with emptying and refilling a pipeline can be avoided.

Implementing pipeline architectures using reconfigurable devices is attractive for
several reasons. Partial reconfiguration for a system operating in an unpredictable
environment such as vector control for AC drives this possibility enables the selection of
functions adaptively. Partial reconfiguration is a powerful method of exploiting the
flexibility of an FPGA, which can be reconfigured while other parts are continuing to
function. Pipelines provide a simple but effective scheme for partial reconfiguration, since
pipeline registers isolate one pipeline stage from another so that computation and
reconfiguration can take place at the same time without interference. The regular structure
of pipelines also simplifies the development of hardware operators, which can be relocated
to different regions of a pipeline, maximizing the reuse of design effort.

Luk proposed an obvious method for reconfiguring an n - stage pipeline; this involves
three steps [7.]:

• First, one needs to complete the current computation and clear the pipeline this
takes n cycles.

• Then reconfiguration can take place.
• Finally, one has to wait for n cycles for the result to flow through the newly

configured pipeline.
This method of reconfiguring a pipeline leads to a latency of 2n cycles, in addition to the
time for reconfiguring all the pipeline stages. In highly pipelined systems when n is large,
the pipeline latency cycles and reconfiguration time will have a significant impact on
performance. The basic idea is to overlap computation and reconfiguration: the first few
pipeline stages are being reconfigured to implement new functions so that data can start
flowing into the newly configured stages of the pipeline, while the rest of the pipeline
stages are completing the current computation. Instead of changing the entire pipeline at
once, this method involves morphing one pipeline to another. The pipeline registers isolate
one pipeline stage from its neighbour, enabling computation and reconfiguration to take
place concurrently in different stages.

Fig.1 shows how a three-stage
pipeline F can be morphed into a pipeline
G in three steps. It should be clear from
the example that during morphing, the
flow of reconfiguration is synchronous
with the flow of data, and hence the
pipeline latency cycles are eliminated. If
the time for reconfiguration is longer than
the pipeline processing time, the pipeline
will need to include flow control
mechanisms to slow down the rate of data
flow while morphing is taking place.
Whether morphing is used or not, a
designer's task is to ensure that,

 F1 F2 F3

F2 F3

F3

G1

G1 G2

G1 G2 G3

Fig.1. Pipeline Reconfiguration

the slowing down due to run-time reconfiguration will not affect the system performance.
Because of the elimination of latency cycles, pipeline morphing will improve the

performance of systems that reconfigure at run-time. It is particularly suitable for devices
supporting rapid reconfiguration, and it works best when reconfiguration time is
comparable to the pipeline computation time. To meet this condition, the user can build
single cycle reconfigurable structures in an FPGA. Morphing can also be applied to systems
with multiple FPGAs arranged as a pipeline.

The method proposed by Athanas and later by Luk is not defined to linear pipelines. It
can be applied to pipelines of other shapes, such as two dimensional meshes or tree shaped
designs.

2.2. Virtual Pipelines

An advantage of adopting a pipeline structure is the ease of mapping a large virtual
pipeline onto a small physical pipeline. The approach involves feeding back partial results
to the physical pipeline, which morphs between different sections of the virtual pipeline.
The performance of such a system can often be enhanced by a temporary storage Fig. 2.The
mapping of a six stage virtual pipeline is implemented onto a three stage physical pipeline.
The first three stages of the virtual pipeline are time multiplexed with the last three stages.
Note that the physical pipeline operates in two modes: the “fill mode” and the “feedback
mode.”

In the fill mode, the first pipeline stage is connected to the external input and data start
filling up the pipeline. Once the pipeline is filled up, partial results will emerge and will be
stored in the temporary storage.

When all input data have been processed by the first three stages of the virtual pipeline
or when the temporary storage is full, the pipeline will operate in the feedback mode.

When an n stage physical pipeline first starts in the feedback mode, its first stage will
be reconfigured to become the (n+1)-th stage of the virtual pipeline. Temporary storage can
be implemented in different ways. If a large amount of temporary storage is required, then
external memory can be used; otherwise onchip registers or embedded memories within the
FPGA may be sufficient. As explained above, pipelines supporting rapid reconfiguration
can afford a small temporary storage. When this happens, the feedback connections can be
made entirely onchip, possibly using global connections in the FPGA so that output data
from the last stage can feedback to the first stage. Global connections are provided in most
of FPGAs; such connections can themselves be pipelined to ensure high performance.

The pipeline morphing method with temporary storage elements presented by Luk [7.]
is an effective technique for reconfiguring systems, which can be organised in pipeline
structure.

3. Reconfiguring Control Systems

The reconfiguration methods presented by Bittner and Athanas [6.] and Luk [7.] is
applicable in the case were no feedback is in the system. If one consider control systems
such as motor control, which has feedback from the plant, and it is characterised with high

dynamic, then in the reconfiguration there should be considered the response of the plant,
and the actual output variable values have to be stored in temporary registers.

Considering the general vector control structure presented in [1.] run-time
reconfiguration of a vector control system can be modelled as shown in Fig. 3.

Temporary
Storage

F1 F2 F3

a) The pipeline is in the fill mode.

Temporary

Storage

F4 F2 F3

b) The pipeline is in feedback mode.

Temporary

Storage

F4 F5 F3

c) The pipeline is in feedback mode.

Temporary

Storage

F4 F5 F6

d) The pipeline is in feedback mode

Fig. 2. Emulation of a six stage virtual pipeline F1 … F6 using a three stage physical
pipeline. The control of the switch that selects the external or the feedback data is not

shown.

uRef
1

F4
F6

F5

PLANT

Temporary
Storage

F1 F2 F3

C’ C”

uRef
2

u(t) e(t)
C

Fig. 3. Control system pipeline

Fig. 3 composed of reconfigurable control blocks (C, C’, C”), there are blocks, which
are not reconfigured at all (F3, F4) and there are blocks, which are reconfigured on demand
(F1, F2, F5, and F6). The run-time reconfiguration is made in two different ways in output
variable computation blocks (F1, F2) and in the feedback (F5, F6).

In the feedback loop, reconfiguration will be from block F5 to F6, which means F5
executes a different function compared to F6 and no temporary storage is necessary. F5 and
F6 may compute different output variable values. In the control loop F1 and F2 are
reconfigured, conform Fig. 2 and may compute the same/different output variable

depending on the reference of the control structure (stator-field, rotor-field). Under these
circumstances the block F3 having the same structure may compute different output
variables with different range (voltage, current).

In this case the new control structure is known before reconfiguration and it is
downloaded in run-time, and compiled in advance.

Modelling reconfiguration helps rapid prototyping. Usually reconfiguration can be
done in run-time, during compilation time or in any other circumstances. In the case of
vector control structures, the new control structure is known before reconfiguration and it is
downloaded in run-time, and compiled in advance. Using the presented reconfiguration
model simulation and rapid prototyping can be made by the use of an intellectual property
library [1.] in Matlab Simulink environment.

Acknowledgment

The authors are grateful to Triscend Inc. and Xilinx Inc. for donations, which made
possible the research on some aspects of reconfigurable vector control framework.

This publication is subject of the scientific and technological Hungarian-Romanian
intergovernmental and sponsored by the Department of Development and Research of the
Hungarian Ministry of Education and its contract partner the Romanian Ministry of
Education Research and Youth, research is part of the Project TET 16/2003.

4. References

[1.] VÁSÁRHELYI, J., IMECS Mária, INCZE J. J., SZABÓ Cs.: Module Library for
Rapid Prototyping and Hardware Implementation of Vector Control Systems. In:
Proceedings of International Conference on Intelligent Engineering Systems, INES
2002. pp. 447-452. Opatija, Croatia.

[2.] IMECS M., BIKFALVI P, NEDEVSCHI S., VÁSÁRHELYI J.: Implementation of a
Configurable Controller for an AC Drive Control a Case Study, In: Proceedings of
IEEE Symposium on FCCM 2000, Napa, California, USA, 2000 pp. 323-324.

[3.] BREBNER G., Field-Programmable Logic: Catalyst for New Computing Paradigms,
In: Field Programmable Logic and Applications, From FPGAs to Computing
Paradigm, 8th International Workshop, Proceedings FPL’98, Tallinn, Estonia, August
31 – September 3, 1998, ISBN 3-540-64948-4, , 1998, pp. 49-58.

[4.] HAUCK S., The Roles of FPGAs in Re-programmable Systems, Proceedings of the
IEEE, Vol. 86, No. 4, April 1998, pp. 615639.

[5.] LUK W., SHIRAZI N., CHEUNG P., Modelling and Optimizing Run-time
Reconfigurable Systems, Proceedings FCCM96, IEEE Computer Society Press, 1996,
pp. 167 – 176.

[6.] BITTNER R., ATHANAS P., Wormhole Run-time Reconfiguration, ACM/SIGDA
International Symposium on Field Programmable Gate Arrays, Monterey, California,
USA, February 1997 pp.79-85.

[7.] LUK W., SHIRAZI N., GUO S. R., CHEUNG P., Pipeline Morphing and Virtual
Pipelines, Proceedings on 7th International Workshop on Field Programmable Logic
and Applications, FPL’97, 1997, pp. 111-120.

