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Abstract: To apply run-time reconfiguration there is need for an appropriate model to 
understand reconfiguration. System on chip technology allowed the use of complex low 
gate/price new type of FPGA. Modelling reconfiguration and using Matlab tools is possible 
to simulate and rapid prototype vector control systems. The paper presents the 
reconfigurable models as introduced by Luk, Cheung, Shirazi and Athanas and will present 
the reconfiguration model for vector control systems. 
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1.  Introduction 

Configurable computing achieving high performance improvements found its wide 
range of applications like image processing, fuzzy controllers, compression, morphology, 
feature extraction, object tracking, computational chemistry, AC drive control, etc.[1.], [2.]. 
In this paper, we will consider some general aspects of the reconfiguration and the run-time 
reconfiguration modelling aspects will be treated. 

The performance improvement results in magnitude improvement over 
microprocessors. The so called final performance approved by an application implemented 
in reconfigurable support depends not only the hardware itself, but also the availability of 
strong parallel resources as well as on the development environments (CAD support, 
compiler). Therefore, two main aspects have to be considered when customized 
reconfigurable computing systems are built [3.]: 



•  Control Structures and the data dependency of future applications have to be 
reconsidered in order to identify simultaneously occurring operations for higher 
performances [2.]. 

•  The availability and possibility of such ‘programmable platforms’ structure is 
essential. Obviously, there exists a so called ‘software gap’ between software 
compilers and compilers for custom computing machines [4.]. 

One of the limitations of contemporary FPGAs is the reconfiguration mechanism. 
There are primary approaches commonly adopted: 

•  serial configuration: In devices using serial configuration, the configuration 
storage elements are connected as a large scan chain around the entire chip. 
During configuration, the programming information is loaded into the device and 
shifted throughout in a bit wise manner. 

•  parallel configuration: parallel loading of the configuration data is possible with 
some devices, close examination of the timing employed by these devices reveals 
an internally serial architecture. Most often, the entire chip must be programmed 
in such fashion before any part of it may be used to perform computation. 

•  context switching configuration: several configuration data is stored in the 
configuration memory of the chip or outside the chip and the reconfiguration of 
the chip is made by switching between the stored configuration contexts. 

•  random access configuration: this type of configuration mode can be applied to 
any of previous configurations at any time not necessarily as part of the power up 
process. 

To allow run-time reconfiguration it is necessary to construct corresponding 
reconfiguration models. In particular, an appropriate model is necessary to provide the basis 
for techniques involved in producing efficient reconfigurable systems and in analysing their 
tradeoffs. Luk introduced some reconfiguration models in [5.]. An overview of the 
introduced reconfiguration models will be given in the following section. 

2.  Modelling Reconfiguration 

An appropriate model is often the key to understand a new technology and to 
exploiting it effectively. The main difficulty in understanding reconfiguration is its dynamic 
nature. First, a simple model was proposed by Luk, which uses a static network to capture 
this dynamic behaviour [5.].  

The basic idea is straightforward. A block that can be configured to behaved either as 
P or as Q function is described by a network with P and Q sandwiched between two control 
blocks C and C’. C and C’ are responsible for routing the data and results from the external 
ports x and y to either P or Q at the desired instant; the choice can be determined by run-
time conditions. Possible implementations of C and C’ may be a demultiplexer and a 
multiplexer, but one should note that, while these components may indeed be possible 
implementations, C and C’ are intended to be abstract entities, which need not be 
implementable [5.].  

Run-time reconfiguration is done while the system executes the designated task. To 
improve system performances pipeline reconfiguration technique was suggested by Bittner 
and Athanas in [6.]. 



2.1. Pipeline morphing and Virtual Pipelines 

Pipeline morphing is simple but effective technique for reconfiguring pipelined FPGA 
designs at run-time. By overlapping computation and reconfiguration, the latency 
associated with emptying and refilling a pipeline can be avoided. 

Implementing pipeline architectures using reconfigurable devices is attractive for 
several reasons. Partial reconfiguration for a system operating in an unpredictable 
environment such as vector control for AC drives this possibility enables the selection of 
functions adaptively. Partial reconfiguration is a powerful method of exploiting the 
flexibility of an FPGA, which can be reconfigured while other parts are continuing to 
function. Pipelines provide a simple but effective scheme for partial reconfiguration, since 
pipeline registers isolate one pipeline stage from another so that computation and 
reconfiguration can take place at the same time without interference. The regular structure 
of pipelines also simplifies the development of hardware operators, which can be relocated 
to different regions of a pipeline, maximizing the reuse of design effort.  

Luk proposed an obvious method for reconfiguring an n - stage pipeline; this involves 
three steps [7.]: 

•  First, one needs to complete the current computation and clear the pipeline this 
takes n cycles.  

•  Then reconfiguration can take place.  
•  Finally, one has to wait for n cycles for the result to flow through the newly 

configured pipeline.  
This method of reconfiguring a pipeline leads to a latency of 2n cycles, in addition to the 
time for reconfiguring all the pipeline stages. In highly pipelined systems when n is large, 
the pipeline latency cycles and reconfiguration time will have a significant impact on 
performance. The basic idea is to overlap computation and reconfiguration: the first few 
pipeline stages are being reconfigured to implement new functions so that data can start 
flowing into the newly configured stages of the pipeline, while the rest of the pipeline 
stages are completing the current computation. Instead of changing the entire pipeline at 
once, this method involves morphing one pipeline to another. The pipeline registers isolate 
one pipeline stage from its neighbour, enabling computation and reconfiguration to take 
place concurrently in different stages. 

Fig.1 shows how a three-stage 
pipeline F can be morphed into a pipeline 
G in three steps. It should be clear from 
the example that during morphing, the 
flow of reconfiguration is synchronous 
with the flow of data, and hence the 
pipeline latency cycles are eliminated. If 
the time for reconfiguration is longer than 
the pipeline processing time, the pipeline 
will need to include flow control 
mechanisms to slow down the rate of data 
flow while morphing is taking place. 
Whether morphing is used or not, a 
designer's task is to ensure that, 
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Fig.1. Pipeline Reconfiguration 



the slowing down due to run-time reconfiguration will not affect the system performance. 
Because of the elimination of latency cycles, pipeline morphing will improve the 

performance of systems that reconfigure at run-time. It is particularly suitable for devices 
supporting rapid reconfiguration, and it works best when reconfiguration time is 
comparable to the pipeline computation time. To meet this condition, the user can build 
single cycle reconfigurable structures in an FPGA. Morphing can also be applied to systems 
with multiple FPGAs arranged as a pipeline.  

The method proposed by Athanas and later by Luk is not defined to linear pipelines. It 
can be applied to pipelines of other shapes, such as two dimensional meshes or tree shaped 
designs. 

2.2. Virtual Pipelines 

An advantage of adopting a pipeline structure is the ease of mapping a large virtual 
pipeline onto a small physical pipeline. The approach involves feeding back partial results 
to the physical pipeline, which morphs between different sections of the virtual pipeline. 
The performance of such a system can often be enhanced by a temporary storage Fig. 2.The 
mapping of a six stage virtual pipeline is implemented onto a three stage physical pipeline. 
The first three stages of the virtual pipeline are time multiplexed with the last three stages. 
Note that the physical pipeline operates in two modes: the “fill mode” and the “feedback 
mode.” 

In the fill mode, the first pipeline stage is connected to the external input and data start 
filling up the pipeline. Once the pipeline is filled up, partial results will emerge and will be 
stored in the temporary storage.  

When all input data have been processed by the first three stages of the virtual pipeline 
or when the temporary storage is full, the pipeline will operate in the feedback mode.  

When an n stage physical pipeline first starts in the feedback mode, its first stage will 
be reconfigured to become the (n+1)-th stage of the virtual pipeline. Temporary storage can 
be implemented in different ways. If a large amount of temporary storage is required, then 
external memory can be used; otherwise onchip registers or embedded memories within the 
FPGA may be sufficient. As explained above, pipelines supporting rapid reconfiguration 
can afford a small temporary storage. When this happens, the feedback connections can be 
made entirely onchip, possibly using global connections in the FPGA so that output data 
from the last stage can feedback to the first stage. Global connections are provided in most 
of FPGAs; such connections can themselves be pipelined to ensure high performance.  

The pipeline morphing method with temporary storage elements presented by Luk [7.] 
is an effective technique for reconfiguring systems, which can be organised in pipeline 
structure.  

3.  Reconfiguring Control Systems 

The reconfiguration methods presented by Bittner and Athanas [6.] and Luk [7.] is 
applicable in the case were no feedback is in the system. If one consider control systems 
such as motor control, which has feedback from the plant, and it is characterised with high 



dynamic, then in the reconfiguration there should be considered the response of the plant, 
and the actual output variable values have to be stored in temporary registers.  

Considering the general vector control structure presented in [1.] run-time 
reconfiguration of a vector control system can be modelled as shown in Fig. 3.  
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Fig. 2. Emulation of a six stage virtual pipeline F1 … F6 using a three stage physical 
pipeline. The control of the switch that selects the external or the feedback data is not 

shown. 
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Fig. 3. Control system pipeline 

Fig. 3 composed of reconfigurable control blocks (C, C’, C”), there are blocks, which 
are not reconfigured at all (F3, F4) and there are blocks, which are reconfigured on demand 
(F1, F2, F5, and F6). The run-time reconfiguration is made in two different ways in output 
variable computation blocks (F1, F2) and in the feedback (F5, F6). 

In the feedback loop, reconfiguration will be from block F5 to F6, which means F5 
executes a different function compared to F6 and no temporary storage is necessary. F5 and 
F6 may compute different output variable values. In the control loop F1 and F2 are 
reconfigured, conform Fig. 2 and may compute the same/different output variable 



depending on the reference of the control structure (stator-field, rotor-field). Under these 
circumstances the block F3 having the same structure may compute different output 
variables with different range (voltage, current). 

In this case the new control structure is known before reconfiguration and it is 
downloaded in run-time, and compiled in advance. 

Modelling reconfiguration helps rapid prototyping. Usually reconfiguration can be 
done in run-time, during compilation time or in any other circumstances. In the case of 
vector control structures, the new control structure is known before reconfiguration and it is 
downloaded in run-time, and compiled in advance. Using the presented reconfiguration 
model simulation and rapid prototyping can be made by the use of an intellectual property 
library [1.] in Matlab Simulink environment. 
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